31.3 C
United States of America
Saturday, July 27, 2024

Focused genome enhancing with a DNA-dependent DNA polymerase and exogenous DNA-containing templates – Nature Biotechnology Categorical Instances

Must read


  • Anzalone, A. V. et al. Search-and-replace genome enhancing with out double-strand breaks or donor DNA. Nature 576, 149–157 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lin, Q. et al. Excessive-efficiency prime enhancing with optimized, paired pegRNAs in crops. Nat. Biotechnol. 39, 923–927 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhuang, Y. et al. Growing the effectivity and precision of prime enhancing with information RNA pairs. Nat. Chem. Biol. 18, 29–37 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, J. et al. Environment friendly focused insertion of huge DNA fragments with out DNA donors. Nat. Strategies 19, 331–340 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Choi, J. et al. Exact genomic deletions utilizing paired prime enhancing. Nat. Biotechnol. 40, 218–226 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jiang, T., Zhang, X.-O., Weng, Z. & Xue, W. Deletion and substitute of lengthy genomic sequences utilizing prime enhancing. Nat. Biotechnol. 40, 227–234 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chen, P. J. & Liu, D. R. Prime enhancing for exact and extremely versatile genome manipulation. Nat. Rev. Genet. 24, 161–177 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liu, B. et al. A cut up prime editor with untethered reverse transcriptase and round RNA template. Nat. Biotechnol. 40, 1388–1393 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nelson, J. W. et al. Engineered pegRNAs enhance prime enhancing effectivity. Nat. Biotechnol. 40, 402–410 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liu, Y. et al. Enhancing prime enhancing by Csy4-mediated processing of pegRNA. Cell Res. 31, 1134–1136 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, G. et al. Enhancement of prime enhancing by way of xrRNA motif-joined pegRNA. Nat. Commun. 13, 1856 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, X. et al. Enhancing prime enhancing effectivity by modified pegRNA with RNA G-quadruplexes. J. Mol. Cell. Biol. 14, mjac022 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Feng, Y. et al. Enhancing prime enhancing effectivity and adaptability with tethered and cut up pegRNAs. Protein Cell 14, 304–308 (2022).

    PubMed Central 

    Google Scholar 

  • Ponnienselvan, Okay. et al. Lowering the inherent auto-inhibitory interplay throughout the pegRNA enhances prime enhancing effectivity. Nucleic Acids Res. 51, 6966–6980 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ellefson, J. W. et al. Artificial evolutionary origin of a proofreading reverse transcriptase. Science 352, 1590–1593 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Skasko, M. et al. Mechanistic variations in RNA-dependent DNA polymerization and constancy between murine leukemia virus and HIV-1 reverse transcriptases. J. Biol. Chem. 280, 12190–12200 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mathews, C. Okay. Deoxyribonucleotide metabolism, mutagenesis and most cancers. Nat. Rev. Most cancers 15, 528–539 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wu, W.-J., Yang, W. & Tsai, M.-D. How DNA polymerases catalyse replication and restore with contrasting constancy. Nat. Rev. Chem. 1, 0068 (2017).

    Article 
    CAS 

    Google Scholar 

  • Truniger, V., Lázaro, J. M. & Salas, M. Two positively charged residues of phi29 DNA polymerase, conserved in protein-primed DNA polymerases, are concerned in stabilisation of the incoming nucleotide. J. Mol. Biol. 335, 481–494 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Halperin, S. O. et al. CRISPR-guided DNA polymerases allow diversification of all nucleotides in a tunable window. Nature 560, 248–252 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tou, C. J., Schaffer, D. V. & Dueber, J. E. Focused diversification within the S. cerevisiae genome with CRISPR-guided DNA polymerase I. ACS Synth. Biol. 9, 1911–1916 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Grünewald, J. et al. Engineered CRISPR prime editors with compact, untethered reverse transcriptases. Nat. Biotechnol. 41, 337–343 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ohtsubo, Y., Sasaki, H., Nagata, Y. & Tsuda, M. Optimization of single strand DNA incorporation response by Moloney murine leukaemia virus reverse transcriptase. DNA Res. 25, 477–487 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Petri, Okay. et al. CRISPR prime enhancing with ribonucleoprotein complexes in zebrafish and first human cells. Nat. Biotechnol. 40, 189–193 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, Q. et al. Broadening the attain and investigating the potential of prime editors via absolutely viral gene-deleted adenoviral vector supply. Nucleic Acids Res. 49, 11986–12001 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, P. et al. Improved prime editors allow pathogenic allele correction and most cancers modelling in grownup mice. Nat. Commun. 12, 2121 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Esteban, J. A., Salas, M. & Blanco, L. Constancy of phi 29 DNA polymerase. Comparability between protein-primed initiation and DNA polymerization. J. Biol. Chem. 268, 2719–2726 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lieberman, Okay. R. et al. Processive replication of single DNA molecules in a nanopore catalyzed by phi29 DNA polymerase. J. Am. Chem. Soc. 132, 17961–17972 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Anzalone, A. V. et al. Programmable deletion, substitute, integration and inversion of huge DNA sequences with twin prime enhancing. Nat. Biotechnol. 40, 731–740 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Blanco, L. et al. Extremely environment friendly DNA synthesis by the phage phi 29 DNA polymerase. Symmetrical mode of DNA replication. J. Biol. Chem. 264, 8935–8940 (1989).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gillmore, J. D. et al. CRISPR–Cas9 in vivo gene enhancing for transthyretin amyloidosis. N. Engl. J. Med. 385, 493–502 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lee, R. G. et al. Efficacy and security of an investigational single-course CRISPR base-editing remedy focusing on PCSK9 in nonhuman primate and mouse fashions. Circulation 147, 242–253 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hopfner, Okay.-P. & Hornung, V. Molecular mechanisms and mobile features of cGAS–STING signalling. Nat. Rev. Mol. Cell Biol. 21, 501–521 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jiang, T. et al. Chemical modifications of adenine base editor mRNA and information RNA broaden its utility scope. Nat. Commun. 11, 1979 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zheng, C. et al. A versatile cut up prime editor utilizing truncated reverse transcriptase improves dual-AAV supply in mouse liver. Mol. Ther. 30, 1343–1351 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mir, A. et al. Closely and absolutely modified RNAs information environment friendly SpyCas9-mediated genome enhancing. Nat. Commun. 9, 2641 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, B. et al. Focused genome enhancing with a DNA-dependent DNA polymerase and exogenous DNA-containing templates. NCBI Bioproject (2023).


  • - Advertisement -spot_img

    More articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    - Advertisement -spot_img

    Latest article